Annual Drinking Water Quality Report

CRESTON
IL1410150

Annual Water Quality Report for the period of January 1
to December 31, 2018

This report is intended to provide you with important
information about your drinking water and the efforts
made by the CRESTON water system to provide safe
drinking water. The source of drinking water used by
CRESTON is Ground Water.

For more information regarding this
report contact:

Name: Mr. Michael Meguridian
Phone: (815) 384-4140

Este Informe contiene información muy importante
sobre el agua que usted bebe. Tradúzcalo ó hable con
alguien que lo entienda bien.

Drinking water, including bottled water, may reasonably be expected to
contain at least small amounts of some contaminants. The presence of
contaminants does not necessarily indicate that water poses a health risk.
More information about contaminants and potential health effects can be
obtained by calling the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations
which limit the amount of certain contaminants in water provided by public
water systems. FDA regulations establish limits for contaminants in bottled
water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than
the general population. Immuno-compromised persons such as persons with
cancer undergoing chemotherapy, persons who have undergone organ
transplants, people with HIV/AIDS or other immune system disorders, some
elderly and infants can be particularly at risk from infections. These people
should seek advice about drinking water from their health care providers.
EPA/CDC guidelines on appropriate means to lessen the risk of Infection by
Cryptosporidium and other microbial contaminants are available from the
Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially
for pregnant women and young children. Lead in drinking water is primarily from
materials and components associated with service lines and home plumbing.
The Village of CRESTON is responsible for providing high quality drinking water, but cannot
control the variety of materials used in plumbing components. When your water has
been sitting for several hours, you can minimize the potential for lead exposure by
flushing your tap for 30 seconds to 2 minutes before using water for drinking or
cooking. If you are concerned about lead in your water, you may wish to have your
water tested. Information on lead in drinking water, testing methods, and steps you
can take to minimize exposure is available from the Safe Drinking Water Hotline or at
http://www.epa.gov/safewater/lead.

The Village of CRESTON wants our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any
of our regularly scheduled board meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this
information, please call Village Hall at (815) 384-4140. To view a summary version of the completed Source Water Assessments, including:
Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA
website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: Based on information obtained in a Well Site Survey conducted in 1991 by the Illinois EPA, several potential sources are located within 1,000
feet of the wells. The Illinois EPA has determined that the CRESTON Community Water Supply’s source water is not susceptible to contamination. This
determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution
system; and available hydrogeologic data on the wells. Furthermore, in anticipation of the U.S. EPA’s proposed Ground Water Rule, the Illinois EPA has
determined that the CRESTON Community Water Supply is not vulnerable to viral contamination. This determination is based upon the evaluation of the following
criteria during the Vulnerability Waiver Process: the community’s wells are properly constructed with sound integrity and proper siting conditions; a hydraulic
barrier exists which should prevent pathogen movement; all potential routes and sanitary defects have been mitigated such that the source water is adequately
protected; monitoring data did not indicate a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination
threat. Because the community’s wells are constructed in a confined aquifer, which should prevent the movement of pathogens into the wells, well hydraulics
were not considered to be a significant factor in the susceptibility determination. Hence, well hydraulics were not evaluated for this system ground water
supply.

<table>
<thead>
<tr>
<th>Source Water Name</th>
<th>Type of Water</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 2 (11781)</td>
<td>Ground Water</td>
<td>Within the Village</td>
</tr>
<tr>
<td>Well 3 (11782)</td>
<td>Ground Water</td>
<td>Within the Village</td>
</tr>
</tbody>
</table>
Lead and Copper

Definitions:
Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th>Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>08/04/2016</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Lead</td>
<td>08/04/2016</td>
<td>0</td>
<td>15</td>
<td>5.7</td>
<td>1</td>
<td>ppb</td>
<td>N</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Water Quality Test Results

Definitions:
Avg:
Level 1 Assessment:
Level 2 Assessment:
Maximum Contaminant Level or MCL:
Maximum Contaminant Level Goal or MCL:
Maximum residual disinfectant level or MRDL:
Maximum residual disinfectant level goal or MRDLG:
na:
mcg/m:
mg/L:

The following tables contain scientific terms and measures, some of which may require explanation.

Regulatory compliance with some MCLs are based on running annual average of monthly samples.
A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
not applicable.
millirems per year (a measure of radiation absorbed by the body)
micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
Milligrams per liter or parts per million - or one ounce in 7,359 gallons of water.
A required process intended to reduce the level of a contaminant in drinking water.
<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>12/31/2018</td>
<td>1.4</td>
<td>0.8 - 1.8</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>2018</td>
<td>2</td>
<td>1.58 - 1.58</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>2018</td>
<td>1</td>
<td>1.35 - 1.35</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>01/13/2017</td>
<td>1.9</td>
<td>1.8 - 1.9</td>
<td>0</td>
<td>10</td>
<td>ppb</td>
<td>N</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.</td>
</tr>
<tr>
<td>Barium</td>
<td>01/13/2017</td>
<td>0.058</td>
<td>0.5 - 0.058</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>01/13/2017</td>
<td>0.744</td>
<td>0.701 - 0.744</td>
<td>4</td>
<td>4.0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Iron</td>
<td>01/13/2017</td>
<td>0.17</td>
<td>0.092 - 0.17</td>
<td>1.0</td>
<td></td>
<td>ppa</td>
<td>N</td>
<td>This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits.</td>
</tr>
<tr>
<td>Manganese</td>
<td>01/13/2017</td>
<td>11</td>
<td>9.5 - 11</td>
<td>150</td>
<td>150</td>
<td>ppb</td>
<td>N</td>
<td>This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits.</td>
</tr>
<tr>
<td>Sodium</td>
<td>01/13/2017</td>
<td>36</td>
<td>35 - 36</td>
<td></td>
<td></td>
<td>ppa</td>
<td>N</td>
<td>Erosion from naturally occurring deposits. Used in water softener regeneration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radioactive Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Radium 226/228</td>
<td>04/11/2017</td>
<td>2.27</td>
<td>2.27 - 2.27</td>
<td>0</td>
<td>5</td>
<td>pCi/L</td>
<td>N</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Gross alpha excluding radon and uranium</td>
<td>04/07/2014</td>
<td>1.5</td>
<td>1.5 - 1.5</td>
<td>0</td>
<td>15</td>
<td>pCi/L</td>
<td>N</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>